抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

![image-20230501172708568](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501172708568.png)

Magnitude ~ Amplitude

Introduction

Why sinusoid? 自然过程中很多都是这样的。

v(t)=vmamplitudesin/cos(ωangular frequencyt+Φphaseargument)v(t)=\overbrace{v_m}^{\mathrm{amplitude}}\sin/\cos(\underbrace{\overbrace{\omega}^{\mathrm{angular~frequency}} t+\overbrace{\Phi}^{\mathrm{phase}}}_{\mathrm{argument}})

ω=2πf=2πT\omega=2\pi f=\frac{2\pi}{T}

Only cover steady-state response in Ch.10.

![image-20230501173728048](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501173728048.png)

![image-20230501174141131](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501174141131.png)

quite difficult to solve problem like this.

Time Domain $\Rightarrow $ ? Domain. Phasor Domain.

Sinusoids

![image-20230501174358029](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501174358029.png)

![image-20230501175200064](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501175200064.png)

![image-20230501175705367](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501175705367.png)

需要比较幅值和相位角。

![image-20230501185251766](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501185251766.png)

![image-20230506101606029](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506101606029.png)

v1=10cos(ωt+50)=sin(ωt+5090)v_1=-10\cos (\omega t+50^\circ)=-\sin(\omega t +50^\circ-90^\circ)

v2v_2 leads v1v_1 by 3030^\circ. v1v2>0v_1-v_2>0 leads, v1v2<0v_1-v_2<0 lags.

i1=4sin(377t+25)=4cos(377t+25+90)i_1=-4\sin(377t+25^\circ)=-4\cos (377t+25^\circ+90^\circ)

i1i2=115+40=155i_1-i_2=115^\circ+40^\circ=155^\circ. i1i_1 leads i2i_2 by 155155^\circ.

Phasors

Expressions of complex number

Rectangular form: z=x+jy\boldsymbol z=x+jy where j=1.j=\sqrt{-1}., xx is real part and yy is imaginary part.

Polar or expoential form: \boldsymbol z=r\ang \varphi=re^{j\varphi}, where rr is magnitude, and φ\varphi is phase.

From rectangular to polar.

x\forall x and yy, r=x2+y2,φ=tan1yxr=\sqrt{x^2+y^2},\varphi=\tan^{-1}\frac{y}{x}.

r\forall r and φ\varphi, x=rcosφ,y=rsinφx=r\cos \varphi,y=r\sin\varphi. \boldsymbol z=x+jy=r\ang \varphi=re^{j\varphi}.

![image-20230506102749859](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506102749859.png)

A complex number that represents amplitude and phase of a sinusoid, which is introduced to simplifying ac circuit analysis.

v(t)=Vmsin(ωt+φ)v(t)=V_m\sin(\omega t+\varphi) can be written as

\boldsymbol V=V_m\ang \varphi

where VmV_m is magnitude, and φ\varphi is phase.

Euler’s identity and phasor representation

e±jφ=cosφ±jsinφe^{\pm j\varphi}=\cos\varphi\pm j\sin\varphi

where cosφ=Re(ejφ),sinφ=Im(ejφ)\cos \varphi=\operatorname{Re}(e^{j\varphi}),\sin \varphi=\operatorname{Im}(e^{j\varphi}).

![image-20230506103914386](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506103914386.png)

Sinor

展示了 cosine-sine diagram 和 Phasor diagram 的关系。

![image-20230506104347660](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506104347660.png)

![image-20230506104620342](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506104620342.png)

![image-20230506110247619](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506110247619.png)

Summary

v(t)=Vmcos(ωt+φ)v(t)=V_m\cos (\omega t+\varphi) can be taken as v(t)=Re(Vejωt)v(t)=\operatorname{Re}(\bold V e^{j\omega t}).

v(t)=Vmsin(ωt+φ)v(t)=V_m\sin (\omega t+\varphi) can be taken as v(t)=Im(Vejωt)v(t)=\operatorname{Im}(\bold V e^{j\omega t}).

where \bold V=V_m e^{j\varphi}=VC_m \ang \varphi.

![image-20230506110536122](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506110536122.png)

![image-20230506110759630](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506110759630.png)

![image-20230506110825938](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506110825938.png)

Phase 取决于象限。

![image-20230506111155448](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506111155448.png)

Calculation of Phasors

Summation and subtraction of sinusoids using phasors.

Phasor domain $\Rightarrow $ Time domain \Rightarrow Phasor domain.

![image-20230506111636638](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506111636638.png)

![image-20230506112325073](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506112325073.png)

10cos2t=80i+0.24didt+2000tidt10\cos 2t=80i+0.24\frac{\mathrm d i}{\mathrm d t}+200\int_0^t i\mathrm d t

\Rightarrow Phasor:

10\ang 0^\circ=80 \bold I+0.24 j\omega \bold I+200\frac{\bold I}{j\omega}

ω=2\omega=2.

10\ang 0^\circ=(a+jb)\bold I \quad \bold I=I_m \ang \theta

![image-20230506113450932](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506113450932.png)

-6\bold Ij+4\bold I+4\bold I/j=50\ang 75^\circ

![image-20230506113722150](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230506113722150.png)

\bold I=7.5 \ang 30^\circ \quad \bold V=120\ang 75^\circ

\bold V/\bold I=(120/7.5)\ang (75^\circ-30^\circ)=16\ang 45^\circ

Impedence.

Phasor Relationships for Circuit Elements

Circuit Elements: R,L,CR,L,C.

Resistor

i(t)=I_m \cos (\omega t +\phi)\Rightarrow \bold I=I_m\ang \phi\Rightarrow v=iR=RI_m\cos (\omega t+\phi)\Rightarrow \bold V=RI_m\ang \phi.

这种情况下相位不变。

![image-20230508100415061](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508100415061.png)

Inductor

\begin{aligned} &i(t)=I_m\cos (\omega t+\phi)\\ \Rightarrow &\bold I=I_m\ang \phi\\ \Rightarrow &v=L\frac{\mathrm d i}{\mathrm d t}=\omega LI_m\cos (\omega t+\phi+90^\circ) \text{~voltage leads current by 90}^\circ\\ \Rightarrow & \bold V=\omega L I_m \ang(\phi+90^\circ)=j\omega L\bold I~(e^{j90^\circ}=\cos 90^\circ+j\sin 90^\circ=j) \end{aligned}

![image-20230508101115794](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508101115794.png)

![image-20230508101244617](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508101244617.png)

Capacitor

V=I/jωC,I=jωCV\bold V=\bold I/j\omega C,\bold I=j\omega C\bold V

![image-20230508101440286](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508101440286.png)

Summary

![image-20230508101505152](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508101505152.png)

VI=R,jωL,1jωC\frac{\bold V}{\bold I}=R,j\omega L,\frac{1}{j\omega C}

叫做阻抗 Impedence.

![image-20230508102023044](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508102023044.png)

a8aacdd8dd9bb15a146e279ee123f16

![image-20230508102900152](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508102900152.png)

![image-20230508104253639](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508104253639.png)

![0a2f067b5dadd6872046574bf1e2108](C:\Users\STEVEN~1\AppData\Local\Temp\WeChat Files\0a2f067b5dadd6872046574bf1e2108.jpg)

![image-20230508104405256](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508104405256.png)

![image-20230508104755139](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508104755139.png)

![image-20230508105837545](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508105837545.png)

![7ab897fca6c17d2a3532fb75cbbedf2](C:\Users\STEVEN~1\AppData\Local\Temp\WeChat Files\7ab897fca6c17d2a3532fb75cbbedf2.jpg)

Take 110V ac source with 0 phase. \bold V_L=V_L \ang \phi, \phi=\arctan 85/110.

![image-20230508110753337](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508110753337.png)

Forced response v0v_0:

V0=jωLI+1jωCI=0\bold V_0=j\omega L \bold I+\frac{1}{j\omega C} \bold I=0

ωL=1ωCω=1LC\omega L=\frac{1}{\omega C}\Rightarrow \omega=\frac{1}{\sqrt{LC}}

Impedance and Admittance

Impedance of elements. 阻抗

Z=VI(Ω)Z=\frac{\bold V}{\bold I} (\Omega)

Showing how circuit opposes sinusoidal current.

VI=R,jωL,1jωC\frac{\bold V}{\bold I}=R,j\omega L,\frac{1}{j\omega C}

Admittance of elements. 导纳

IV=G,1jωL,jωC\frac{\bold I}{\bold V}=G,\frac{1}{j\omega L},j\omega C

![image-20230508111740796](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508111740796.png)

![image-20230508111834883](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508111834883.png)

![image-20230508112013768](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508112013768.png)

将交流电的分析方法转化为直流电的分析方式。Impedance 是复数,例如 Z=3+j4Z=3+j4,代表感性阻抗。直流属于交流的特例,比如取 ω0\omega \to 0,就可以得到 i=0i=0.

Expressions of impedance

Rectangular form: Z=R±jX\bold Z=R\pm jX where R:R: resistance(电 XX:reactance(电

Polar form: \bold Z=|\bold Z|\ang\theta where Z=R2+X2,θ=±tan1X/R|\bold Z|=\sqrt{R^2+X^2},\theta=\pm \tan^{-1} X/R.

++: inductive or lagging, - : capacitive or leading

![image-20230508112413306](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508112413306.png)

Expressions of admittance

Rectangular form: Y=G+jB\bold Y=G+jB where GG: conductance(电 BB: susceptance (电

G+jB=1R+jXG+jB=\frac{1}{R+jX}

G=RR2+X2,B=XR2+X2G=\frac{R}{R^2+X^2},B=-\frac{X}{R^2+X^2}

Nature of impedance

![image-20230508112753170](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508112753170.png)

![image-20230508113508457](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230508113508457.png)

Z=5j1ωC\bold Z=5-j\frac{1}{\omega C}

I=VsZ,V=j1ωCI\bold I=\frac{\bold V_s}{\bold Z},\bold V=-j\frac{1}{\omega C}\bold I

Kirchhoff’s Laws in the Frequency Domain

![image-20230510080853950](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510080853950.png)

![image-20230510080904507](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510080904507.png)

Impedance Combinations

Voltage-division priciple and the series resistance still holds.

![image-20230510081017881](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510081017881.png)

![image-20230510081211259](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510081211259.png)

![image-20230510081227952](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510081227952.png)

![image-20230510081247265](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510081247265.png)

![image-20230510081528209](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510081528209.png)

Z1=1jωC1Z2=8+jωLZ3=3+1jωC2Zin=Z1+Z2//Z3Z_1=\frac{1}{j\omega C_1} \quad Z_2=8+j\omega L\quad Z_3=3+\frac{1}{j\omega C_2}\\ Z_{\mathrm{in}}=Z_1+Z_2//Z_3

![image-20230510081928141](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510081928141.png)

Keys: Problem given in time domain. Answer is in time domain.

\bold V_s=20\ang -15 ^\circ

Z=60+1j410m//j45ZeqZ=60+\underbrace{\frac{1}{j4\cdot 10 \mathrm m}//j 4\cdot 5}_{Z_{\mathrm{eq}}}

Vo=ZeqZeq+60Vs\bold V_o=\frac{Z_{eq}}{Z_{eq}+60}\bold V_s

计算器复数:https://zhuanlan.zhihu.com/p/68880025

![image-20230510082615934](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510082615934.png)

![image-20230510083016744](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510083016744.png)

![image-20230510083035237](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510083035237.png)

Bridge Circuit.

![image-20230510083239662](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230510083239662.png)

其实是并联。

评论