抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

Terminologies

English 中文
first-order circuit 一阶电路
source-free circuit 无源电路,零输入电路
natural response 自然响应
time constant 时间常数
singularity function 奇异函数
step function 阶跃函数
impulse function 冲击函数
sample 采样函数
ramp function 斜坡函数
sift 筛分
complete response 全响应
forced response 强制响应
steady-state response 稳态响应
temporary response 暂态响应
tangent 切线
decay 衰减

![image-20230403142836174](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403142836174.png)

The Source-Free RC Circuit

Capacitor initially connected in a circuit with source, which is suddenly disconnected.

Energy stored in capacitor released to resistor.

What is circuit’s reaction to excitation, i.e., circuit response.

![image-20230329092219947](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230329092219947.png)

Voltage can’t suddenly change \Rightarrow choose voltage to analyze.

Cdvdt+vR=0dvv=1RCdtC\frac{\mathrm d v}{\mathrm d t}+\frac{v}{R}=0\\ \frac{\mathrm d v}{v}=-\frac{1}{RC}\mathrm d t

Voltage response of RC circuit.

The natural response of a circuit is due to initial energy stored and physical characteristics of circuit itself, with no external sources of excitation.

v(t)=Aet/RCv(t)=V0et/RCv(t)=Ae^{-t/RC} \Rightarrow v(t)=V_0e^{-t/RC}

τ:=RCv(t)=V0et/τ\tau := RC \quad v(t)=V_0e^{-t/\tau}

Time required for response to decay to a factor of 36.8% of V0V_0, expressing rapidity with which voltage decreases, measured in seconds.

Capacitor is assumed fully discharged after 5τ5\tau of the circuit takes 5τ5\tau to reach its final state or steady state.

v(t+τ)=0.368v(t)=1ev(t)v(t+\tau)=0.368v(t)=\frac{1}{e}v(t), regardless tt.

The smaller the τ\tau, the more rapidly the voltage decreases.

![image-20230403110319098](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403110319098.png)

Natural Response.

How to determine the time constant?

  1. Combining several capacitors to a single CeqC_{\mathrm{eq}}.
  2. Finding Thevenin equivalent RThR_{\mathrm{Th}} at terminals of CeqC_{\mathrm{eq}}.
  3. Determining τ=RThCeq\tau=R_{\mathrm{Th}}C_{\mathrm{eq}}.

Current, Power, and Energy

v(t)=V0et/τiR(t)=v(t)R=V0Ret/τv(t)=V_0e^{-t/\tau}\Rightarrow i_R(t)=\frac{v(t)}{R}=\frac{V_0}{R}e^{-t/\tau}

p(t)=viR=V02Re2t/τp(t)=vi_R=\frac{V_0^2}{R} e^{-2t/\tau}

wR(t)=0tpdt=0tV02Re2t/τdt=12CV02(1e2t/τ)w_R(t)=\int_0^t p\mathrm d t=\int_0^t \frac{V_0^2}{R}e^{-2t/\tau}\mathrm d t=\frac{1}{2}CV_0^2(1-e^{-2t/\tau})

wR()12CV02=wc(0)w_R(\infin)\rightarrow\frac{1}{2}CV_0^2 =w_c(0), which means that energy initially stored in CC is eventually dissipated in RR.

Analyzing source-free RCRC circuit includes:

  • Find v(0)=V0v(0)=V_0 and τ\tau.
  • Obtain v(t)=V0et/τv(t)=V_0e^{-t/\tau}.
  • Determine iC,vR,iRi_C,v_R,i_R.
  • Determine pp and ww.

Chapter 7, Problem 1.

![image-20230403185634799](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403185634799.png)

![image-20230403185648078](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403185648078.png)

Chapter 7, Problem 2.

![image-20230403190044055](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403190044055.png)

Thevenin Equivalent.

Chapter 7, Problem 4.

![image-20230403190134889](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403190134889.png)

v0=40v_0=40.

Chapter 7, Problem 7.

![image-20230403190500737](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403190500737.png)

Using

vo(t)=vo()+[vo(0)vo()]et/τ=7.2+0.8et/24 Vv_o(t)=v_o(\infin)+[v_o(0)-v_o(\infin)]e^{-t/\tau}=7.2+0.8e^{-t/24}\mathrm{~V}

Chapter 7, Problem 10.

![image-20230403191001516](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403191001516.png)

Decay to 1/n1/n.

Aet2/τ/Aet1/τ=e(t1t2)/τ=1/nt2t1=τln(n)Ae^{-t_2/\tau}/Ae^{-t_1/\tau}=e^{(t_1-t_2)/\tau}=1/n \Rightarrow \boxed{t_2-t_1=\tau\ln(n)}

The Source-Free RL Circuit

  • Inductor initially connected in a circuit with source, which is suddenly disconnected.
  • Energy stored in inductor released to resistor.

![image-20230403112139007](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403112139007.png)

i(t)=AeRt/L= ⁣= ⁣= ⁣= ⁣i(0)=A=I0i(t)=I0eRt/Li(t)=Ae^{-Rt/L} \overset{i(0)=A=I_0}{=\!=\!=\!=\!\Rightarrow}i(t)=I_0e^{-Rt/L}

τ:=LRi(t)=I0et/τ\tau:=\frac{L}{R} \quad i(t)=I_0e^{-t/\tau}

Summary

![image-20230403112503781](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403112503781.png)

Notes

  • Source-free RCRC or RLRL circuit is due to sudden change of a circuit.

  • Method I Short-Cut Approach: find τ\tau and initial value

    v(t)=V0et/τi(t)=I0et/τv(t)=V_0e^{-t/\tau} \quad i(t)=I_0e^{-t/\tau}

  • Method II Straightforward Approach. Write KCL or KVL 1st1^{\mathrm{st}}-order differential Eqs., and solve

    dxdt+ax=0x(t)=X0eat\frac{\mathrm d x}{\mathrm d t}+ax=0 \Rightarrow x(t)=X_0e^{-at}

Examples

dvdt+2v=0dvv=2dtv=Ae2t= ⁣= ⁣= ⁣= ⁣= ⁣v(0)=1Ve2t\frac{\mathrm d v}{\mathrm d t}+2v=0 \Rightarrow \int\frac{\mathrm d v}{v}=\int-2\mathrm d t \Rightarrow v=Ae^{-2t}\overset{v(0)=-1\mathrm V}{=\!=\!=\!=\!=\!}-e^{2t}

2didt3i=0dii=1.5ti=Ae1.5t= ⁣= ⁣= ⁣= ⁣= ⁣i(0)=2A2e1.5t2\frac{\mathrm d i}{\mathrm d t}-3i=0 \Rightarrow\frac{\mathrm d i}{i}=1.5t\Rightarrow i=Ae^{1.5t}\overset{i(0)=2\mathrm A}{=\!=\!=\!=\!=\!}2e^{1.5t}

![image-20230403143959982](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403143959982.png)

Req=20//5=4R_\mathrm{eq}=20//5=4 C=0.1FC=0.1F τ=0.4\tau=0.4 vC(t)=15e2.5tv_C(t)=15e^{-2.5t} vx(t)=1220vC(t)=9e2.5tv_x(t)=\frac{12}{20}v_C(t)=9e^{-2.5t} ix=vx(t)/12=0.75e2.5ti_x=v_x(t)/12=0.75e^{-2.5t}

![image-20230403144256701](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403144256701.png)

τ=L/R=1/50R=v/i=3L=3/50=60 mHτ=20 msW(0)=12Li(0)2=1260m×302=27 JW(0.01)=1260m×(30e0.5)2=W(0)/e\tau=L/R=1/50 \quad R=v/i=3\quad L=3/50=60\mathrm{~mH} \quad \tau=20\mathrm{~ms}\\W(0)=\frac{1}{2}Li(0)^2=\frac{1}{2} 60m\times 30^2=27\mathrm{~J}\quad W(0.01)=\frac{1}{2}60m\times(30e^{-0.5})^2=W(0)/e

![image-20230410101146267](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410101146267.png)

v=Ldidti+v2+v3i4=0i=3v2/3i=didtdii=2/3dti=10e2/3t Aix=v2=16i=53e2/3t Av=L\frac{\mathrm d i}{\mathrm d t}\\ i+\frac{v}{2}+\frac{v-3i}{4}=0\Rightarrow i=-3v\\ -2/3 i=\frac{\mathrm d i}{\mathrm d t}\\ \frac{\mathrm d i}{i}=-2/3 \mathrm d t\\ \Rightarrow i=10e^{-2/3 t}\mathrm{~A}\\ i_x=\frac{v}{2}=-\frac{1}{6}i=-\frac{5}{3}e^{-2/3t}\mathrm{~A}

![image-20230410102842131](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410102842131.png)

![image-20230410102856273](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410102856273.png)

Draw the circuit before t=0t=0

v0=24 V×36+3=8 Vv_0=24\mathrm{~V}\times\frac{3}{6+3}=8\mathrm{~V}

wc(0)=12Cv02=112×64=163w_c(0)=\frac{1}{2}Cv_0^2=\frac{1}{12}\times 64=\frac{16}{3}

Draw the circuit after t=0t=0

Req=3 Ω,C=16 Fv(t)=8et/τ=8e2t VR_{eq}=3\mathrm{~\Omega},C=\frac{1}{6} \mathrm{~F} \Rightarrow v(t)=8e^{-t/\tau}=8e^{-2t}\mathrm{~V}

![](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410103418965.png)

![image-20230410103434783](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410103434783.png)

![image-20230410103550808](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410103550808.png)

Before t=0t=0

v0=12 Vv_0=12\mathrm{~V}

Between t=0t=0 and t=1t=1

RC=500k×2m=1000svt=12et/1000RC=500k \times 2m=1000 s\Rightarrow v_t=12e^{-t/1000}

After t=1t=1

v1=12e1/100011.988RC=1k×2m=2vt=v1e(t1)/2=11.988e(t1)/2v_1=12e^{-1/1000}\approx 11.988\\ RC=1k\times 2m=2\\ v_t=v_1 e^{-(t-1)/2}=11.988e^{-(t-1)/2}

![image-20230410104059998](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410104059998.png)

Before t=0t=0

v=2099+3=15 Vv=20\frac{9}{9+3}=15\mathrm{~V}

After t=0t=0

vt=15et/(10×20m)=15e5tv_t=15e^{-t/(10\times20m)}=15e^{-5t}

E=Cv22=20m1522=2.25E=\frac{Cv^2}{2}=\frac{20m 15^2}{2}=2.25

Chapter 7, Problem 11.

![image-20230403191352936](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403191352936.png)

对于电容,找电压关系,对于电感,找电流关系,为了找电流关系,变换电压源为电流源。

![image-20230403191438771](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403191438771.png)

Chapter 7, Problem 13.

![image-20230403191544807](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403191544807.png)

(b) The energy dissipated in the resistor is

W=0tpdt=0t80×103e2×103dt=80×1032×103e2×103t0.5×1030=40(1e1)μJ=25.28μJ\begin{aligned} W & =\int_0^t p d t=\int_0^t 80 \times 10^{-3} e^{-2 \times 10^3} d t=-\left.\frac{80 \times 10^{-3}}{2 \times 10^3} e^{-2 \times 10^3 t} \right| \begin{array}{c} 0.5 \times 10^{-3} \\ 0 \end{array} \\ & =40\left(1-e^{-1}\right) \mu \mathrm{J}=25.28 \mu \mathrm{J} \end{aligned}

注意负号

Chapter 7, Problem 16.

![image-20230403192226371](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403192226371.png)

![image-20230403192442939](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403192442939.png)

Chapter 7, Problem 18.

![image-20230403192825547](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403192825547.png)

Chapter 7, Problem 19.

![image-20230403192855353](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403192855353.png)

最好用的方法是直接解微分方程,利用 Supermesh.

10i+400.5i+v=0v=Ldidti=2e5t10i+40\cdot0.5i+v=0 \quad v=L\frac{\mathrm d i}{\mathrm d t} \Rightarrow i=2e^{-5t}

也可以利用戴维南等值。

![image-20230403193430740](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230403193430740.png)

Singularity Functions

奇异函数及其导数都是不连续的。最广泛使用的三种奇异函数是单位阶跃 (unit step)、单位冲激 (unit impulse) 和单位斜坡 (unit ramp) 函数。

![image-20230410104502016](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410104502016.png)

Unit Step Function

![image-20230410104524825](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410104524825.png)

v(t)={0,t<t0V0,t>t0v(t)=\left\{ \begin{aligned} &0,&t<t_0\\ &V_0,&t>t_0 \end{aligned} \right.

can be expressed as

v(t)=V0u(tt0)v(t)=V_0u(t-t_0)

![image-20230410105748547](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410105748547.png)

Unit Impulse / Delta Function

δ(t)=du(t)dt={0,t<0Undefined or 1,t=00,t>0\delta(t)=\frac{\mathrm d u(t)}{\mathrm dt}=\left\{ \begin{aligned} &0, &t<0\\ &\mathrm{Undefined~or~ 1}, &t=0\\ &0,&t>0 \end{aligned} \right.

δ(t)\delta(t) can be regarded as a very short duration pulse of unit area (strength)

00+δ(t)dt=1\int_{0^-}^{0^+} \delta(t) \mathrm d t=1

Sampling or sifting property.

abf(t)δ(tt0)dt=f(t0)\int_a^b f(t)\delta (t-t_0)\mathrm d t=f(t_0)

Proof:

abf(t)δ(tt0)dt=abf(t0)δ(tt0)dt=f(t0)abδ(tt0)dt=f(t0)\int_a^b f(t)\delta(t-t_0)\mathrm d t=\int_a^b f(t_0)\delta(t-t_0)\mathrm d t=f(t_0)\int_a^b \delta(t-t_0)\mathrm d t=f(t_0)

Special case: t0=0t_0=0.

Useful in DSP.

![image-20230410110239872](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410110239872.png)

Unit Ramp Function

r(t)=tu(t)dt=tu(t)={0,t0t,t>0r(t)=\int_{-\infin}^t u(t)\mathrm d t=tu(t)=\left\{ \begin{aligned} &0,&t\le0\\ &t,&t>0 \end{aligned} \right.

![image-20230410110714855](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410110714855.png)

a. 5(u(t2)u(t4))5(u(t-2)-u(t-4)). 滤波使用

b. 10u(t)18u(t2)+8u(t5)10u(t)-18u(t-2)+8u(t-5)

c. 2r(t)2r(t5)10u(t5)2r(t)-2r(t-5)-10u(t-5)

d. 5r(t)10r(t1)+5r(t2)5r(t)-10r(t-1)+5r(t-2).

e. 2u(t)2r(t)+2r(t2)+4u(t2)2u(t3)2u(t)-2r(t)+2r(t-2)+4u(t-2)-2u(t-3)

![image-20230410111737267](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410111737267.png)

  • vs=2u(t)+4u(t)=2+2u(t)v_s=2u(-t)+4u(t)=2+2u(t).

  • ![image-20230410112034806](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410112034806.png)

  • i=110m15δ(t2)mdt=1.5u(t2)mAi=\frac{1}{10m}\int 15\delta(t-2)m \mathrm d t=1.5u(t-2)mA

![image-20230410112233297](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410112233297.png)

The sifting property of delta function.

(33+5(3)2+10)==28(-3^3+5(-3)^2+10)==28

cos3π=1\cos 3\pi=-1

![image-20230410112345340](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410112345340.png)

对于电路有变化的情况非常有用。

Step Response of an RC Circuit

What is step response?

Response of circuit due to a sudden application of a dc voltage or current source modeled as step function.

书上这段有问题,应该电流源才能这么写

![image-20230410112757477](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410112757477.png)

![image-20230410112812142](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410112812142.png)

Vsu(t)vR=Cdvdt\frac{V_s u(t)-v}{R}=C\frac{\mathrm d v}{\mathrm d t}

Equals to

vsvR=Cdvdtt>0\frac{v_s -v}{R}=C\frac{\mathrm d v}{\mathrm d t} \quad t>0

v(t)=Vs+(V0Vs)et/τ\Rightarrow v(t)=V_s+(V_0-V_s) e^{-t/\tau}

![image-20230410113057388](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410113057388.png)

Current through capacitor

i(t)=Cdvdt={VsRet/τu(t),V0=0VsV0Ret/τu(t),V00i(t)=C\frac{\mathrm d v}{\mathrm d t}=\left\{ \begin{aligned} &\frac{V_s}{R}e^{-t/\tau}u(t) , &V_0=0\\ &\frac{V_s-V_0}{R}e^{-t/\tau}u(t),&V_0\not=0 \end{aligned} \right.

Decomposing complete response in terms of sources.

自然相应和强制相应。

v(t)Complete Response=V0et/τvn:Natural Response+Vs(1et/τ)vf:Forced Response\underbrace{v(t)}_{\mathrm{Complete~Response}}=\underbrace{V_0e^{-t/\tau}}_{v_n:\mathrm{Natural~Response}}+\underbrace{V_s(1-e^{-t/\tau})}_{v_f:\mathrm{Forced~Response}}

![image-20230410113739452](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230410113739452.png)

  • Natural response is due to internal stored energy.
  • Forced response is due to external independent source.
  • vnv_n eventually dies out along with transient component of vfv_f, leaving only steady state component of vfv_f.

Decomposing complete response in terms of permanency

v(t)Complete Response=V0et/τvss:Steadystate response+Vs(1et/τ)vt:Transient Response\underbrace{v(t)}_{\mathrm{Complete~Response}}=\underbrace{V_0e^{-t/\tau}}_{v_{ss}:\mathrm{Steady-state~response}}+\underbrace{V_s(1-e^{-t/\tau})}_{v_t:\mathrm{Transient~Response}}

  • Steady-state response vss=Vsv_{ss}=V_s: remains after transient response has died out-permanent part.
  • Transient response: vt=(V0Vs)et/τv_t=(V_0-V_s)e^{-t/\tau} will die out with time - temporary part.
  • When Vs=0V_s=0 (source-free), vn=vt,vf=vssv_n=v_t,v_f=v_{ss}.

Find step response of RCRC circuit, Short-cut Method

v(t)=v()+[v(0)v()]et/τv(t)=v(\infin)+[v(0)-v(\infin)]e^{-t/\tau}

where

v(0):v(0): initial capacitor voltage obtained from circuit for t<0t<0.

v():v(\infin): final capacitor voltage obtained from circuit for t>0t>0. (after 5τ5\tau)

τ:\tau: time constant obtained from circuit from circuit for t>0t>0.

Notes

If switching at t=t00t=t_0 \not=0,

v(t)=v()+[v(t0)v()]e(tt0)/τv(t)=v(\infin)+[v(t_0)-v(\infin)] e^{-{\color{red}(t-t_0)}/\tau}

where v(t0)v(t_0) is initial value at t=t0+t=t_0^+.

  • τ\tau only depends on R,L,CR,L,C
  • Source-free RCRC circuit is a special case where v()=0v(\infin)=0.

Eq. of complete response applies only to step responses (input excitation is constant)

Step Response of an RL Circuit

i(t)=VsR+(I0VsR)et/τ\boxed{i(t)=\frac{V_s}{R}+\left(I_0-\frac{V_s}{R}\right)e^{-t/\tau}}

where τ=L/R\tau=L/R.

i(t)=i()+[i(0)i()]et/τi(t)=i(\infin)+[i(0)-i(\infin)]e^{-t/\tau}

where

i(0)i(0): initial inductor current obtained from circuit for t<0t<0.

i()i(\infin): final inductor current obtained from circuit for t>0t>0 (after 5τ5\tau)

τ\tau: time constant obtained from circuit for t>0t>0.

For calculating v(t)v(t), use v(t)=Ldi(t)dtv(t)=L\frac{\mathrm d i(t)}{\mathrm d t}, we can derive that:

v(t)=Lτ(i(0)i())et/τv(t)=\frac{L}{\tau} (i(0)-i(\infin))e^{-t/\tau}

![image-20230412204907442](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230412204907442.png)

Solve for vv in the following differential Eqs., subject to the stated initial condition.

2dvdtv=3u(t)v(0)=62\frac{\mathrm d v}{\mathrm d t}-v=3u(t) \quad v(0)=-6

Initial state: v=6v=-6, final state: v=3v=-3. Homogenous equation:

2dvdt=v0.5dt=dvvv=3e0.5t32\frac{\mathrm d v}{\mathrm d t}=v \Rightarrow 0.5\mathrm d t=\frac{\mathrm dv}{v}\Rightarrow v=-3e^{0.5t}-3

image-20230412210243506

image-20230412210754151

Chapter 7, Problem 55

Screenshot_20230514_101708_com.flexcil.flexcilnot

后面 i0=0i_0=0,相当于导线。

Chapter 7, Problem 62

Screenshot_20230514_100344_com.flexcil.flexcilnot

注意第二个从 11 开始计时。

Chapter 7, Problem 64

![image-20230514095201911](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230514095201911.png)

![image-20230514095215471](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230514095215471.png)

关键是 Req=2+6//3R_{eq}=2+6//3

First-Order Op Amp Circuits

image-20230417100203049

RC Type Op Amp Circuit (small)

image-20230417101927874

image-20230417101939433

image-20230417102124435

Screenshot_20230417_102951_com.flexcil.flexcilnot

Screenshot_20230417_103427_com.flexcil.flexcilnot

Chapter 7, Problem 75

![image-20230514093532156](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230514093532156.png)

![image-20230514093601727](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230514093601727.png)

注意电流参考方向。

Quiz 4

![image-20230514171652604](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230514171652604.png)

首先注意到 Op Amp 对应的电压和电流关系。设 C1C_1 电压为 v1v_1C2C_2 电压为 v2v_2,可以得到:

v1=v2+i2R=v2+RCdv2dt=v2+dv2dtv_1=v_2+i_2R=v_2 +RC \frac{\mathrm d v_2}{\mathrm d t}=v_2 + \frac{\mathrm d v_2}{\mathrm d t}

还有对应的电压关系:

v2+CR(dv1dt+dv2dt)=1v_2+CR\left(\frac{\mathrm d v_1}{\mathrm d t}+\frac{\mathrm d v_2}{\mathrm d t}\right)=1

也就是

v1+dv1dt=1v_1+\frac{\mathrm d v_1}{\mathrm d t}=1

结合 v1(0)=0v_1(0)=0,得到 v1=1etv_1=1-e^{-t}

为了求出 v2v_2,还是向上回代,得到

1et=v2+dv2dt1-e^{-t}=v_2 + \frac{\mathrm d v_2}{\mathrm d t}

解得 v2(t)=c1etett+1v_2(t)=c_1 e^{-t}-e^{-t}t+1,得到 c1=1c_1=-1,得出 v2(t)=et(t+1)+1v_2(t)=-e^{-t}(t+1)+1

vo(t)=dv2dt=tetv_o(t)=-\frac{\mathrm d v_2}{\mathrm d t}=-te^{-t}

评论