抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

Terminologies

homogeneity 齐次性。

Thevenin’s theorem, Norton’s theorem. 戴维宁定律 诺顿定律。

Kirchhoff’s laws are used to analyze a circuit without changing its original configuration, but tedious computations involved in case of complex circuits.

Thevenin’s and Norton’s theorems are used to analyze complex circuit by simplifying its configuration.

image-20230315161853648

核心在于简化电路。

Linearity Property

Linear relationship between cause and effect (xx and yy).

Only applying to resistors.

homogeneity property and additivity property.

  • if x=kxx'=kx, then y=f(x)=kyy'=f(x')=ky.
  • if x=i=1nkixix'=\sum_{i=1}^n k_i x_i, then y=f(x)=i=1nkiyiy'=f(x')=\sum_{i=1}^n k_i y_i.

image-20230315162114302

All elements are linear $\Rightarrow $ circuit is linear.

![image-20230308083613117](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230308083613117.png)

I=18 AV=73 VI=\frac{1}{8} \mathrm{~A} \Rightarrow V=\frac{7}{3} \mathrm{~V}.
image-20230308085649001

image-20230308085630496

Req=voienteringGeq=iovabR_{\mathrm{eq}}=\frac{v_o}{i_{\mathrm{entering}}}\newline G_{\mathrm{eq}}=\frac{i_o}{v_{ab}}

Power is nonlineraly related to voltage or current.

Equivalent resistance can be found by linearity.

image-20230308091721254

Superposition principle

image-20230315162258493

It relies on linearity property and states that voltage across (or current through) an element in a linear circuit is algebraic sum of voltages across (or currents through) that element due to each independent source acting alone.

image-20230308092411266

image-20230308092927328

4=40v+4i1=20v+0iv=1/20,i=1/2I=60/202/2=24=40v+4i\\ 1=20v+0i\\ \Rightarrow v=1/20,i=1/2\\ I=60/20-2/2=2

功率不符合叠加原理。

Pros and cons of superposition

  • Reducing complex circuit to simpler one by
    • Replacing voltage source by short circuit.
    • Replacing current source by open circuit.
  • Involving more calculation of analyzing contributions due to each source.

Source transformation.

  • Tools for simplifying circuits: series parallel combination, ΔY\Delta -Y or YΔY -\Delta transformation, source transformation.
  • Basic idea: equivalence.

Replace a voltage source in series with a resistor by a current source in parallel with a resistor. or vice versa.

image-20230313101418901

vs=isRis=vs/R transformationv_s=i_sR \quad i_s=v_s/R \mathrm{~ transformation}

Active Sign Convention.

image-20230313101531914

b=cb=c, ada\not=d

电池的内阻。

image-20230313101723634

第一眼进行化简:

image-20230313102512303

vxv_x parallel with 4 ohm.

image-20230313102824071

image-20230313103041272

Transform to current source.

image-20230313103504440

3mA * 1k Ohm

image-20230313103741508

Where is vov_o?

回避改变未知量。

适用条件:

image-20230315191908147

Thevenin’s Theroem

Any linear two-terminal circuit can be replaced by equivalent circuit.

VThV_{Th} 为端口的开路电压,RThR_{Th} 为独立源关闭时端口的输入(或等效电阻)。

image-20230315080412490

image-20230313105826301

A linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage sourse VThV_{Th} in series with a resistor RThR_{Th}, where VThV_{Th} is open-circuit voltage at terminals and RThR_{Th} is input or equivalent resistance at terminals when all independent sources are turned off.

Can be mathematically derived.

VThV_{Th} is open-circuit voltage across two terminals of original circuit.

Independent sources are turned off. (电压源短路,电流源断路) To Find RThR_{Th}

Case 1: Without dependent sources.

Superposition.

![image-20230313110835734](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230313110835734.png)

v0+=i0v0+=i0v_0+-=i_0 \leftarrow \quad v_0-+ = i_0 \rightarrow

Find RThR_{Th} Case 2: With dependent sources.

image-20230315080944278

vx+10i+4vx+15i=0vx=5ii=0-v_x+10i+4v_x+15i=0\\ v_x=-5i\\ \Rightarrow i=0

io=vo15+vo+4vx15ixvx=5ixi_o=\frac{v_o}{15}+\underbrace{\frac{v_o+4v_x}{15}}_{i_x} \quad v_x=5i_x

Obtain vo/iov_o/i_o. Assume any vov_o for easier calculation.

No independent source \Rightarrow VTh=0V_{Th}=0.

Determine Thevenin resistance. Use symbol vov_o or one volt.

  • Excited with current source + nodal analysis.
  • Excited with voltage source + mesh analysis.

image-20230315082148354

image-20230330134656301 $$ 0.1i+\frac{20i-2v}{40}+i=\frac{v}{10} \Rightarrow v=i+5i-0.5v+10i\Rightarrow v=10i\\ i_o=0.1i+\frac{v}{10}=1.1i\\ v_o=20i+v=30i $$

Norton’s Theorem

RTh=RNIN=VThRTh\boxed{R_{\mathrm{Th}}=R_\mathrm{N}} \quad \boxed{I_\mathrm N=\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}}}

image-20230315082239647

image-20230315082757782

Determine any two of the variables.

voc(open circuit)(volt meter)isc(short circuit)(amp meter)Reqv_{oc(open~circuit)} (volt ~ meter)\quad i_{sc(short~ circuit)}(amp ~ meter) \quad R_{eq}

RTh=RN=vociscR_{\mathrm{Th}}=R_{\mathrm{N}} = \frac{v_{oc}}{i_{sc}}

image-20230315083547884

2ix2 i_x equals to independent source.

image-20230315083647777

Standalone circuits.

image-20230315090853538

The Wheatstone bridge. Not parellel. Balanced Bridge.

image-20230315090833861

  • Find VThV_{Th} or INI_N using basic laws, nodal analysis, mesh analysis, source transformation, linearity or superposition.
  • Find RThR_{Th} or RNR_N when dependent sources exist.
    • Apply vo,iov_o,i_o.
    • Do open-circuit and short-circuit tests to original circuit and find voc/iscv_{oc}/i_{sc}.
  • Find equivalent circuit that you are better at, and find the other one using source transformation.

Power transferred to load

希望传递给负载的功率最大。需要注意,为负载传输最大功率会造成电路内部损耗大于或等于传输给负载的功率。

p=i2RL=(VThRTh+RL)2RLp=i^2 {R_L}=\left(\frac{V_{Th}}{R_{Th}+{R_L}}\right)^2 {R_L}

Find the first derivative: power with respect to RL{R_L}.

dpdRL=0\frac{\mathrm d p}{\mathrm d {R_L}}=0

RL=RTh,pmax=VTh24RTh,pload=psource{R_L} = R_{Th} ,p_{\max}=\frac{V_{Th}^2}{4 R_{Th}}, p_{load}= p_{source}

image-20230315092940445

Load branch.

  • Maximum power problem.
    • find Thevenin equivalent.
    • Maximum power theorem.
  • Difference between power supplied to load (i2RL)(i^2 R_L) and loss (i2Rl)(i^2 R_l)
    • maximum power \Leftrightarrow minimum loss.

Tellegen Theorem

Problems

Chapter 4, Problem 1.

![image-20230401212514473](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401212514473.png)

Linerity Properity.

Chapter 4, Problem 4.

![image-20230401212735995](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401212735995.png)

Reverse Application of Linearity.

Chapter 4, Problem 5

Chapter 4, Problem 8.

![image-20230401213008730](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401213008730.png)

Let Vo=V1+V2V_o=V_1+V_2, where V1V_1 and V2V_2 are due to 9-V and 3-V sources respectively. To find V1V_1, consider the circuit below.

![image-20230401213643671](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401213643671.png)

9V13=V19+V11V1=2713\frac{9-V_1}{3}=\frac{V_1}{9}+\frac{V_1}{1} \Rightarrow V_1=\frac{27}{13}

To find V2V_2, consider the circuit below.

![image-20230401213738207](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401213738207.png)

V29+V23=3V21V2=2713\frac{V_2}{9}+\frac{V_2}{3}=\frac{3-V_2}{1}\Rightarrow V_2=\frac{27}{13}

Chapter 4, Problem 11

![image-20230401214645704](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401214645704.png)

Superposition with control sources.

![image-20230401215044508](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401215044508.png)

At node a,

6=va40+vavb10240=5va4vb6=\frac{v_a}{40}+\frac{v_a-v_b}{10}\Rightarrow 240=5v_a-4v_b

At node b,

I14I1+vb20=0vb=100I1-I_1-4I_1+\frac{v_b}{20}=0\Rightarrow v_b=100I_1

But

I1=vavb10I_1=\frac{v_a-v_b}{10}

![image-20230401215708419](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230401215708419.png)

Chapter 4, Problem 14.

![image-20230402082421315](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402082421315.png)

Chapter 4, Problem 21.

![image-20230402083015552](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402083015552.png)

可以合并并联电流源的电流,串联电压源的电压。

Chapter 4, Problem 23.

![image-20230402083328814](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402083328814.png)

Chapter 4, Problem 24.

![image-20230402083900747](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402083900747.png)

![image-20230402083910775](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402083910775.png)

Chapter 4, Problem 33.

Determin RThR_{\mathrm{Th}} and VThV_{\mathrm{Th}} at terminals 1-2 of each of the circuits of Fig. 4.101.

![image-20230402084259168](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402084259168.png)

a.

RTh=10//40=8 ΩVTh=16 VR_{\mathrm{Th}}=10//40=8\mathrm{~\Omega}\quad V_{\mathrm{Th}}=16\mathrm{~V}

b. Use source transformation.

Chapter 4, Problem 34.

![image-20230402084647991](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402084647991.png)

For ReqR_{\mathrm{eq}}, turn voltage source into short circuit and current source into open circuit like this,

image-20230402084808227

For VeqV_{\mathrm{eq}}, use nodal analysis.

![image-20230402085720305](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402085720305.png)

认为只是使用电压表测量两点电压,因此这个branch没有电流。

At node 1,

40v110=3+v1v220+v140\frac{40-v_1}{10}=3+\frac{v_1-v_2}{20}+\frac{v_1}{40}

At node 2, (no current)

3+v1v220=03+\frac{v_1-v_2}{20}=0

另外,可以考虑是 standalone circuit, 直接电压叠加。32+6032+60

Chapter 4, Problem 36.

![image-20230402090621616](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402090621616.png)

![image-20230402090634148](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402090634148.png)

Chapter 4, Problem 37.

![image-20230402091135831](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402091135831.png)

So there is short circuit.

Chapter 4, Problem 39.

![image-20230402091416697](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402091416697.png)

Chapter 4, Problem 40.

![image-20230402092528854](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402092528854.png)

Thevenin Equvalent with dependent source.

To obtain VThV_{\mathrm{Th}}, we apply KVL to the loop,

70+(10+20)kI+4Vo=0Vo=10kI-70+(10+20)kI+4V_o=0 \quad V_o=10kI

To find RThR_{\mathrm{Th}}, we remove the independent source 70-V and apply a 1-V source at terminals a-b, as shown in the circuit below.

![image-20230402093816520](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402093816520.png)

We notice that Vo=1 VV_o=-1\mathrm{~V}.

1+20kI1+4Vo=0I1=0.25 mAI2=I1+1 V10 k=0.35 mARTh=1I2=10.35 kΩ=2.857 kΩ-1+20kI_1+4V_o=0 \Rightarrow I_1=0.25\mathrm{~mA}\\ I_2=I_1+\frac{1\mathrm{~V}}{10\mathrm{~k}}=0.35\mathrm{~mA}\\ R_{\mathrm{Th}}=\frac{1}{I_2}=\frac{1}{0.35}\mathrm{~k\Omega}=2.857\mathrm{~k\Omega}

Chapter 4, Problem 42.

![image-20230402094419818](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402094419818.png)

![image-20230402094944452](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402094944452.png)

We can also see that there will be no current across the middle branch.

![image-20230402095212907](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402095212907.png)

Easier with mesh analysis.

Chapter 4, Problem 44.

![image-20230402095712470](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402095712470.png)

![image-20230402100355856](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402100355856.png)

Chapter 4, Problem 47.

Chapter 4, Problem 49.

Screenshot_20230402_143925_com.flexcil.flexcilnot

Chapter 4, Problem 53.

![image-20230402144306502](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402144306502.png)

Dependent Source.

![image-20230402144819191](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402144819191.png)

![image-20230402144913341](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402144913341.png)

Chapter 4, Problem 54.

![image-20230402150757011](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402150757011.png)

![image-20230402150808311](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402150808311.png)

注意三点,第一点是关掉 3V,第二点Mesh Analysis关掉独立源,第三点电阻可能是负数。

使用Mesh Analysis,对应电路上的电压、电流,需要注意支路电流的表达式。

Chapter 4, Problem 59.

![image-20230402151413719](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402151413719.png)

Chapter 4, Problem 64

![image-20230402211605238](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402211605238.png)

![image-20230402211634969](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230402211634969.png)

评论