抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

Terminologies

![image-20230417103648750](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417103648750.png)

Introduction

Containing resistors and two energy storage elements and characterized by second-order differential Eq.

![image-20230417103910062](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417103910062.png)

Cannot be reduced.

![image-20230417104042881](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417104042881.png)

d2ydt2+pdydt+qy=0\frac{\mathrm d ^2 y}{\mathrm d t^2}+p\frac{\mathrm d y}{\mathrm d t}+qy=0

Characteristic Eq: s2+ps+q=0s^2+ps+q=0.

  1. s1s2s_1\not=s_2 and real, y=A1es1t+A2es2ty=A_1e^{s_1t}+A_2e^{s_2t}. y1=es1t,y2=es2ty_1=e^{s_1t},y_2=e^{s_2t}.
  2. s1=s2=ss_1=s_2=s and real, y=(A1t+A2)esty=(A_1t+A_2)e^{st}. y1=test,y2=esty_1=te^{st},y_2=e^{st}.
  3. s1,s2=β±jβs_1,s_2=\beta\pm j\beta, y=eβt(A1cosγt+A2sinγt)y=e^{\beta t}(A_1\cos \gamma t+A_2\sin\gamma t). y1=eβtcosγt,y2=eβtsinγty_1=e^{\beta t}\cos \gamma t,y_2=e^{\beta t}\sin \gamma t.

Where A1A_1 and A2A_2 determined from y(0)y(0) and dy(0)/dt\mathrm d y(0)/\mathrm d t.

We assume A1A_1 and A2A_2 and solve them by the initial value of yy and the initial derivative of yy.

Finding Initial and Final Values

Finding

  1. iL(t=0)vC(t=0)i_L(t=0^-)\quad v_C(t=0^-)
  2. iL(t=0+)vC(t=0+)i_L(t=0^+) \quad v_C(t=0^+)
  3. diLdt=vLL(t=0+)(Use KVL)dvCdt=iCC(t=0+)(Use KCL)\displaystyle \frac{\mathrm d i_L}{\mathrm d t}=\frac{v_L}{L}(t=0^+)(\mathrm{Use ~ KVL})\quad \frac{\mathrm d v_C}{\mathrm d t}=\frac{i_C}{C}(t=0^+)(\mathrm{Use ~ KCL})
  4. iL(t)vc(t)i_L(t\to\infin)\quad v_c(t\to \infin)

image-20230417110357501

![image-20230417110600524](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417110600524.png)

For t=0\boldsymbol{t=0^-}

![image-20230417110848658](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417110848658.png)

i(0)=1 A,v(0)=2 Vi(0^-)=1\mathrm{~A},v(0^-)=2\mathrm{~V}.

For t=0+\boldsymbol{t=0^+}

v(0+)=v(0)v(0^+)=v(0^-) i(0)=i(0+)i(0^-)=i(0^+)

image-20230417111027106 $$ 12=0.4\underbrace{\frac{\mathrm d i(0^+)}{\mathrm d t}}_{25\mathrm{~A/s}}+v(0^+) $$

i(0+)=120dv(0+)dt0 V/s+v(0+)2i(0^+)=\frac{1}{20}\underbrace{\frac{\mathrm d v(0^+)}{\mathrm d t}}_{0\mathrm{~V/s}}+\frac{v(0^+)}{2}

Screenshot_20230417_214606_com.flexcil.flexcilnot

For t=\boldsymbol{t=\infin}

v()=12 Vi()=6 Av(\infin)=12 \mathrm{~V}\quad i(\infin)=6\mathrm{~A}


image-20230417111827049

iL(0+),vC(0+)i_L(0^+),v_C(0^+) cannot change suddenly, thus equal to iL(0),vC(0+)i_L(0^-),v_C(0^+). However vR(0+)vR(0)v_R(0^+)\not=v_R(0^-)

Circuit for t=0\boldsymbol {t=0^-}

![image-20230417112026920](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417112026920.png)

iL(0+)=iL(0)=6 Ai_L(0^+)=i_L(0^-)=-6\mathrm{~A}, vC(0+)=vC(0+)=0 Vv_C(0^+)=v_C(0^+)=0\mathrm{~V}

Circuit for t=0+\boldsymbol {t=0^+}

![image-20230417112408259](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417112408259.png)

Write KCL Eqn.

iR(0+)=iL(0+)+6iR(0+)=0vR(0+)=5×iR(0+)=0i_R(0^+)=i_L(0^+)+6 \Rightarrow i_R(0^+)=0\Rightarrow v_R(0^+)=5\times i_R(0^+)=0

For diL(0+)dt\frac{\mathrm d i_L(0^+)}{\mathrm d t}, Write KVL Eqn.

2diL(0+)dt+vR(0+)=vc(0+)2\frac{\mathrm d i_L(0^+)}{\mathrm d t}+v_R(0^+)=v_c(0^+)

For dvC(0+)dt\frac{\mathrm d v_C (0^+)}{\mathrm d t}, Write KCL Eqn.

4=15dvC(0+)dt+iR(0+)4=\frac{1}{5}\frac{\mathrm d v_C (0^+)}{\mathrm d t}+i_R(0^+)

For dvR(0+)dt\frac{\mathrm d v_R(0^+)}{\mathrm d t}, write KVL/KCL?

dvC(0+)dt=dvR(0+)dt+dvL(0+)dt\frac{\mathrm d v_C(0^+)}{\mathrm d t}=\frac{\mathrm d v_R(0^+)}{\mathrm d t}+{\color{blue}\frac{\mathrm d v_L(0^+)}{\mathrm d t}}

vR(0+)/5=iR(0+)=0v_R(0^+)/5=i_R(0^+)=0

Screenshot_20230417_215444_com.flexcil.flexcilnot

tt \to \infin, 电流源串联并不能叠加电流,而是需要满足 KCL.

![image-20230417113243773](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230417113243773.png)

Problem 1

![image-20230505185019114](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505185019114.png)

![image-20230505185339107](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505185339107.png)

Problem 2

![image-20230505185403746](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505185403746.png)

Problem 3

![image-20230505190828123](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505190828123.png)

Screenshot_20230505_192452_com.flexcil.flexcilnot

Problem 6

The Source-Free Series RLC Circuit

By KVL,

Ri+Ldidt+1C0idt=0Ri+L\frac{\mathrm d i}{\mathrm d t}+\frac{1}{C}\int_{-\infin}^0 i\mathrm d t=0

![image-20230419080243320](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419080243320.png)

Take derivative on both sides,

d2idt2+RLdidt+1LCi=0\frac{\mathrm d ^2 i}{\mathrm d t^2}+\frac{R}{L}\frac{\mathrm d i}{\mathrm d t}+\frac{1}{LC}i=0

Using vv to express:

Ri+Ldidt+v=0Ri+L\frac{\mathrm d i}{\mathrm d t}+v=0

i=Cdvdtdidt=Cdv2dt2i=C\frac{\mathrm d v}{\mathrm d t}\quad \frac{\mathrm d i}{\mathrm d t}=C\frac{\mathrm d v^2}{\mathrm d t^2}

RCdvdt+LCdv2dt2+v=0RC\frac{\mathrm d v}{\mathrm d t}+LC\frac{\mathrm d v^2}{\mathrm d t^2}+v=0

d2vdt2+RLdvdt+1LCv=0\frac{\mathrm d ^2 v}{\mathrm d t^2}+\frac{R}{L}\frac{\mathrm d v}{\mathrm d t}+\frac{1}{LC}v=0

Equals to

d2idt2+1τdidt+1LCi=0\frac{\mathrm d ^2 i}{\mathrm d t^2}+\frac{1}{\tau}\frac{\mathrm d i}{\mathrm d t}+\frac{1}{LC}i=0

Initial Conditions

i(0)=I0i(0)=I_0

The current through the inductor cannot change suddenly.

How about the derivative of i(0)i(0)?

Write KVL Eq. for t>0t>0.

Ri(0+)+Ldi(0+)dt+v(0+)=0Ri(0^+)+L\frac{\mathrm d i(0^+)}{\mathrm d t}+{\color{blue}v(0^+)}=0

Characteristic Eq.

Aest(s2+RLs+1LC)=0Ae^{st}\left(s^2+\frac{R}{L}s+\frac{1}{LC}\right)=0

Roots:

s1=R2L+(R2L)21LC,s2=R2L(R2L)21LCs_1=-\frac{R}{2L}+\sqrt{\left(\frac{R}{2L}\right)^2-\frac{1}{LC}},s_2=-\frac{R}{2L}-\sqrt{\left(\frac{R}{2L}\right)^2-\frac{1}{LC}}

i(t)=A1es1t+A2es2t\boxed{i(t)=A_1e^{s_1 t}+A_2e^{s_2 t}}

and i(0)=A1+A2,di(t)/dt=s1A1+s2A2i(0)=A_1+A_2,\mathrm d i(t)/\mathrm d t=s_1 A_1+s_2A_2.

Introduce α\boldsymbol \alpha and ω0\boldsymbol \omega_0

α:=R2L=12τ\alpha :=\frac{R}{2L}=\frac{1}{2\tau}

Neper frequency or damping factor. Np/s

Determines rate at which response is damped. 随时间变化的相应逐渐削弱的过程,叫做阻尼。

image-20230419082201802

ω0:=1LC\omega_0:=\frac{1}{\sqrt{LC}}

Resonant frequency or undamped natural frequency. rad/s

The characteristic eqn. can be changed to:

s2+2αs+ω0=0s^2+2\alpha s+\omega_0=0

s1=α+α2ω02,s2=αα2ω02s_1=-\alpha+\sqrt{\alpha^2-\omega_0^2},s_2=-\alpha-\sqrt{\alpha^2-\omega_0^2}

associated with natural response of circuit and measured in nepers per second.

Case 1: α2>ω02\boldsymbol{\alpha^2>\omega_0^2} Overdamping

i(t)=A1es1t+A2es2ti(t)=A_1 e^{s_1 t}+A_2 e^{s_2 t}

α>ω0C>4LR2\alpha>\omega_0 \Rightarrow C>\frac{4L}{R^2}

s1,2s_{1,2} are negative and real.

Case 2: α2=ω02\boldsymbol{\alpha^2=\omega_0^2} Critical damping

i(t)=(A1t+A2)eαti(t)=(A_1 t+A_2) e^{-\alpha t}

α=ω0C=4LR2\alpha=\omega_0 \Rightarrow C=\frac{4L}{R^2}

Case 3: α2<ω02\boldsymbol{\alpha^2<\omega_0^2} Underdamping

s1,2=α±jωdωd=ω02α2s_{1,2}=-\alpha\pm j \omega_d \quad \omega_d=\sqrt{\omega_0^2-\alpha^2}

Both ω0\omega_0 and ωd\omega_d are natural frequencies.

ω0\omega_0: undamped natural frequency. ωd\omega_d: damped natural frequency.

Solution:

i(t)=eαt(A1cosωdt+A2sinωdt)i(t)=e^{-\alpha t}(A_1 \cos \omega_d t+A_2\sin \omega_d t)

with time constant τ=1/α\tau=1/\alpha and period T=2π/ωdT=2\pi/\omega_d

![image-20230419083627518](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419083627518.png)

![image-20230419083754622](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419083754622.png)

Problem 7

![image-20230505194540774](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505194540774.png)

Problem 14

![image-20230505195312336](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505195312336.png)

Problem 16

![image-20230505200258693](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505200258693.png)

![image-20230505201703770](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505201703770.png)

注意

di(0)dt=1L(Ri(0)+vC(0))\frac{\mathrm d i(0)}{\mathrm d t}=-\frac{1}{L}(Ri(0)+v_C(0))

利用KVL计算。

The Source-Free Parallel RLC Circuit

![image-20230419084040445](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419084040445.png)

Initial Conditions. v(0)=vC,dv(0)/dt=1RC(RI0+vC)v(0)=v_C,\mathrm d v(0)/\mathrm d t=-\frac{1}{RC}(R I_0+v_C).

![image-20230419084317125](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419084317125.png)

α=12RC=12τω0=1LC\boxed{\alpha=\frac{1}{2RC}=\frac{1}{2\tau}\quad \omega_0=\frac{1}{\sqrt{LC}}}

![image-20230419084350451](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419084350451.png)

![image-20230419090009170](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419090009170.png)

![image-20230419090236885](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419090236885.png)

![image-20230419090309194](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419090309194.png)


![image-20230419091330380](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419091330380.png)

α=12RCω0=1LC\alpha=\frac{1}{2RC} \quad \omega_0=\frac{1}{\sqrt{LC}}

![image-20230419091742000](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419091742000.png)

α=Req2L=1LC\alpha=\frac{R_{eq}}{2L}=\frac{1}{\sqrt{LC}}

![image-20230419091838429](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419091838429.png)

i(0)=i(0+)=5 Ai(0^-)=i(0^+)=5\mathrm{~A}

![image-20230419092117330](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419092117330.png)

i(0)=i(0+)=12 Av(0)=v(0+)=0 Vi(0^-)=i(0^+)=12\mathrm{~A} \quad v(0^-)=v(0^+)=0\mathrm{~V}

Special Case: Undamping.

v(t)=Asin(ωt)v(t)=A\sin(\omega t)

Cdv(t)/dt=Aωcos(ωt)C\mathrm d v(t)/\mathrm d t=A\omega \cos (\omega t)

when t=0t=0, i=12i=12, Aω=12A\omega=12. and ω=1/LC=1/2\omega=1/\sqrt{LC}=1/2.

![image-20230419092700109](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419092700109.png)

串联情况下,电压和电流的方程的情况是一样的。

Assuming R=2 kΩR=2\mathrm{~k\Omega}, design a series and parallel RLC circuit that has the characteristic equation.

τ=L/R=1/1001/LC=106\tau=L/R=1/100\quad 1/LC=10^6

L=20,C=50nL=20,C=50n

Problem 18

![image-20230505201911066](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505201911066.png)

![image-20230505202640437](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505202640437.png)

Problem 19

![image-20230505202707626](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505202707626.png)

Problem 20

![image-20230505203420247](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505203420247.png)

![image-20230505204446746](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230505204446746.png)

Problem 35

61d28cc7cf32ae29d3891217f4c5565

Problem 40

image-20230514151855077

image-20230514151903393

注意要求电流,然后注意 dv(0)/dt\mathrm d v(0)/\mathrm d t 的初值条件。

Problem 42

87a6ac4532dabdae418dc3b25bce750

Problem 48

image-20230505210258578

注意 i(0)i(0) 正负,得到 i(0)=2 A,v(0)=2 Vi(0)=-2\mathrm{~A},v(0)=2\mathrm{~V}

Problem 55

image-20230505210846911

Step Response of a Series RLC Circuit

Math Background

d2ydt+pdydt+qy=C\frac{\mathrm d ^2 y}{\mathrm d t}+p\frac{\mathrm d y}{\mathrm d t}+qy=C

General solution: y=yss+yty=y_{ss}+y_t.

  • yssy_{ss} is steady-state part, yss=y()=C/qy_{ss}=y(\infin)=C/q.
  • yty_t is a transient part depending on roots of s2+ps+q=0s^2+ps+q=0. 和上面的情况一样。

![image-20230419093740362](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419093740362.png)

![image-20230419093818487](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230419093818487.png)

Solve the following differential equations subject to the specified initial conditions.

  • d2vdt2+4v=12,v(0)=0,dv(0)/dt=2\frac{\mathrm d ^2 v}{\mathrm d t^2}+4v=12,v(0)=0,\mathrm d v(0)/\mathrm d t=2

    v()=3,s1,2=±2iv(\infin)=3,s_{1,2}=\pm2i

    v(t)=3+A1cos2t+A2sin2tv(t)=3+A_1\cos 2t+A_2\sin2t

    A1=3,2A2=2A2=1A_1=-3,2A_2=2\Rightarrow A_2=1

  • d2vdt2+2dvdt+v=3,v(0)=5,dv(0)/dt=1\frac{\mathrm d ^2 v}{\mathrm d t^2}+2\frac{\mathrm d v}{\mathrm d t}+v=3,v(0)=5,\mathrm d v(0)/\mathrm d t=1

    s2+2s+1=0,s1,2=1s^2+2s+1=0,s_{1,2}=-1. vt=(A1t+A2)etv_t=(A_1t+A_2)e^{-t}.

    vss=3,v(t)=vss+vt=3+(A1t+A2)etv_{ss}=3,v(t)=v_{ss}+v_t=3+(A_1t+A_2)e^{-t}

    v(0)=5=3+A2A2=v(0)=5=3+A_2 \Rightarrow A_2=\cdots

  • d2idt2+2didt+5i=10,i(0)=4,di(0)/dt=2\frac{\mathrm d ^2 i}{\mathrm d t^2}+2\frac{\mathrm d i}{\mathrm d t}+5i=10,i(0)=4,\mathrm d i(0)/\mathrm d t=-2

    两个复根。

    i(t)=2+eαt(A1cosωdt+A2sinωdt)i(t)=2+e^{-\alpha t}(A_1\cos \omega_d t+A_2\sin\omega_d t)

![image-20230501160053771](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501160053771.png)

首先是 DC Circuit. Either Ch.7, Ch.8

分析是 Second Order Circuit. 其中 iivv 确定一个就好。

i=Cdvdt,24+Ri+Ldidt+v=0i=C\frac{\mathrm d v}{\mathrm d t},-24+Ri+L\frac{\mathrm d i}{\mathrm d t}+v=0

![image-20230501160600006](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501160600006.png)

确定类型是 Overdamped. 利用

i=Cdvdti=C\frac{\mathrm d v}{\mathrm d t}

可以得到 C=150 nFC=150\mathrm{~nF}.

![image-20230501161710257](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501161710257.png)

General Second-Order Circuits

![image-20230501163033462](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501163033462.png)

![image-20230501163641311](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501163641311.png)

d2xdt2+pdxdt+q=C\frac{\mathrm d ^2 x}{\mathrm d t^2}+p\frac{\mathrm d x}{\mathrm d t}+q=C

![image-20230501163940082](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501163940082.png)

首先确定是 Series.

![image-20230501164206977](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501164206977.png)

解得

d2idt2+7didt+10i=30\frac{\mathrm d ^2 i}{\mathrm d t^2}+7\frac{\mathrm d i}{\mathrm d t}+10i=30

解得

s1=2,s2=5s_1=-2,s_2=-5

i=3+A1e2t+A2e5ti=3+A_1 e^{-2t}+A_2e^{-5t}

![image-20230501164813096](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501164813096.png)

![image-20230501170915897](C:\Users\Steven Meng\AppData\Roaming\Typora\typora-user-images\image-20230501170915897.png)

评论